partagenocce (partagenocce) wrote,
partagenocce
partagenocce

Category:

академик Лысенко оказался прав

http://www.contrtv.ru/common/2790

Как я уже писал [1а] 7 августа исполняется 60 лет со дня окончания знаменитой августовской сессии Всесоюзной академии сельскохозяйственных наук имени Ленина (ВАСХНИЛ). Но есть еще одна юбилейная дата, которую мало кто заметил - 29 сентября 2008 года исполняется 110 годовщина со дня рождения Лысенко. А почему бы в связи с данной годовщиной не обелить и имя этого выдающегося советского естествоиспытателя. Я уже пытался это сделать [1б], но, не касаясь научных вопросов. В данной статье я попытаюсь доказать, что Лысенко был прав (или по крайней мере он ошибался не больше генетиков) и в научном плане. Но для этого мне придется немного залезть в дебри клеточной и молекулярной биологии. Для тех, кому моё изложение покажется сверхсложным или испугает то, что слишком "многа букав", я рекомендую сразу перейти к заключению.

1. УЧЕНЫЙ И НАУЧНАЯ ТОЛПА

Почти все учёные, с кем я разговаривал, убеждены, что Августовская сессия 1948 г. ВАСХНИЛ завершилась разгромом генетики и временной победой лысенковщины. Итак, казалось бы все просто. Сомнений нет. В советскую великую науку пролез дядя Плохиш Лысенко. Заручившись поддержкой "гнусного тирана, сатрапа" Сталина, он разгромил самую передовую к тому времени советскую генетику и тем самым нанёс колоссальный урон советской генетике. Вроде бы все ясно. Надо осудить плохиша Лысенко и вычеркнуть из народной памяти тирана Сталина, целенаправленно уничтожавшего великих советских ученых. Именно так пишут нынешние российские ученые-генетики, так писали советские генетики после ХХ-го съезда КПСС.

Я тоже не так давно думал, что сессия ВАСХНИЛ была ошибкой Сталина. И думал я так аж до лета 2006 года. И даже написал Интернет-дайджест про августовскую 1948 г сессию ВАСХНИЛ и выложил на форуме С.Г.Кара-Мурзы. Если не верите, то сходите на форум С.Г.Кара-Мурзы [1]. В той своей статье я написал следующую фразу. "Особо большой урон советской генетике нанесла августовская сессия ВАСХНИЛ".[Spoiler (click to open)]

Меня раскритиковали сталинисты, особенно мой бывший соавтор по нашей книге о России, М. Кудрявцев. С другой стороны, меня поддержали присутствующие на этом форуме генетики. Но я не изменил своего мнения и продолжал считать Лысенко исчадием ада, разгромившим советскую генетику. Прошло два года и теперь мне стыдно за эту фразу - все оказалось не так просто. Вы спросите, почему через год я изменил свой подход и стал думать по-другому? Почему же эта, казалось бы, очевидная мысль вдруг покинула меня?

Произошло событие, которое заставило меня в корне пересмотреть свое отношение к Лысенко и к сессии ВАСХНИЛ. Началось все с того, что мой младший брат, работающий в области органопринтинга, прислал мне статью одного канадского ученого китайского происхождения [2]. В этой статье Лью пишет о научных открытия Лысенко и о его трагедии, как ученого, разбирает заслуги академика Лысенко. В статье, на большом фактическом материале, доказывается, что Лысенко внес существенный вклад в агробиологию, что его результаты не несут черты подделок или шарлатанства, хотя и не следуют канонам научных публикаций. Я прошелся по ссылкам, которые приводит в конце своей статьи Лью, и нашел подтверждение изложенным фактам. И я начал перечитывать материалы о Лысенко снова и искать информацию между строк, проводя свое собственное расследование. Я прочитал даже книгу В. Сойфера, где он всячески чернит и поливает грязью Лысенко [2а].

По мере все более глубокого ознакомления с темой, я увидел, что в проблеме имеется много наносного. Более того, полученный материал шокировал. Оказалось, что все было совсем не так, как живописуют противники Лысенко. Не Лысенко начал атаку против генетиков, а генетики первыми атаковали Лысенко, причем использовали грубые административные приемы. Прочитав стенограмму сессии ВАСХНИЛ, я понял, что Лысенко пришел туда не громить, а защищаться. Об этом свидетельствуют и выступления его сторонников, которые доказывают, какой огромный вклад в агробиологию внес Лысенко (см. выше). Итак, событийная канва всех этих событий для меня практически не изменилась, но вот оценку всех этих событий мне пришлось пересмотреть. Я написал статью о Лысенко [3], где изложил свое новое понимание, и включил часть материалов в свою книгу о Сталине.

Можно было бы на этом и закончить, поставив жирную точку и заявив, что все это враки, а Лысенко был выдающийся естествоиспытатель, открывший много нового [4]. При этом можно было бы сослаться на мою статью на сайте Интернет против телеэкрана. Но ведь вы не поверите. Ведь придет какой-нибудь генетик-сноб и заявит, что мол, Миронин Сигизмунд не является специалистом, он есть типичный дилетант и чайник, ничего не понимающий в генетике или еще добавит, что Сигизмунд разбирается в генетике как свинья в апельсинах, и верить ему не надо. И ведь вы поверите этого генетику, а не мне. Поэтому я был вынужден написать ещё одну, эту статью.

Перед тем как начать, хочу остановиться на одном моменте. Почему-то наследники морганистов присвоили себе наименование генетиков. На самом деле, Лысенко и его сподвижники имели не меньше прав сказать, что они генетики тоже. Но Лысенко постоянно подчеркивал, что он мичуринец. Поэтому я буду называть противников Лысенко морганистами, а лысенковцев - мичуринцами.

Ну и самое, самое, самое последнее - прошу прощения за профессиональную лексику, использованную в ряде параграфов. Хотя я и старался, все-таки написано сложно, но проще не получилось. Что получилось, судите сами, как говорит ведущий в одной популярной телевизионной передаче.

2. ЧТО ТАКОЕ НАСЛЕДСТВЕННОСТЬ И КАК ОНА ПЕРЕДАЕТСЯ?

Если углубляться в эти научные дебри, то не хватит и многотомного руководства - споры о словах могут быть вечными. Конечно, споры в науке нужны, но не в популярных статьях. Дело в том, что прочтение текстов Моргана, Вейсмана, де Фриза и других переоткрывателей Менделя не позволяет точно оценить, что же они доказали и что именно считали в то время. Точно так же, когда критикуют Лысенко, то почему-то забывают о том гигантском прогрессе, который отмечен в области молекулярной и клеточной биологии. А нам надо разобраться в том, что было известно тогда в пред- и ранние послевоенные годы.

......



4. ОСОБЕННОСТИ ГЕНЕТИКИ РАСТИТЕЛЬНЫХ КЛЕТОК

Чтобы понять суть открытий Мичурина и Лысенко в области агробиологии, мне придется поговорить и об особенностях генетики растений. Мне же, чтобы понять сущность вегетативной гибридизации, пришлось перечитать учебники по физиологии растений. Ведь одним из выдающихся достижений Лысенко и Мичурина, была вегетативная гибридизация, которая характерна в основном для растений. Я с удивлением обнаружил, что многое я не знал. Например, то, что все живые растительные клетки в составе растения образуют синцитий, а по-простому, что все клеточки растений соединены друг с другом тоненькими трубочками.

Сначала отмечу, что прививочный (вегетативный) гибрид - это растение, полученное в результате прививки (трансплантации) чужеродной соматической ткани (привой) на материнское растений (подвой) [23]. Если генетические системы привоя и подвоя совсем несовместимы, то привой гибнет или же гибнут оба, так как генетическая информация от привоя отравляет клетки хозяина. Вегетативные гибриды на уровне знаний 1948 года с точки зрения школы Лысенко подробно описал И.Е.Глущенко [24]. Сам Мичурин [25] открытым текстом называл некоторые (не все) свои гибриды вегетативными гибридами.

Сейчас установлено, что генетическая информация из одной клетки растения передается в другие гораздо более часто, чем у животных. Как же реализуется механизм переноса генетической информации от подвоя (растения-хозяина) к привою (пересаженному черенку)? Для объяснения механизма мне придется нарисовать очень сильно упрощенную модель.

Оказалось, что имеется существенное различие в механизмах передачи наследственной информации между растениями и животными. Там существует механизм горизонтального переноса генетической информации от растения-хозяина к побегу и наоборот. Именно Лысенко и Мичурин сделали великое открытие о возможности передачи наследственной информации от одной растительной клетки к другой в пределах целостного растения и закрепления ее в половых клетках. И это особенность только мира растений.

Существует механизм горизонтального переноса генетической информации от левкоя к побегу и наоборот при прививании одного сорта другому. Недавно эксперименты с привоями показали, что эндогенная (от хозяина) информационная РНК (переносчик информации от ДНК к месту синтеза белка) перемещается по системам перемещения растворов к клеткам привоя [26]. Она входит и передвигается от одной клетки к другой по цитоплазматическим мостикам, соединяющим все растительные клетки в данном организме, в том числе клетки привоя и подвоя. Мало кто знает, что после прививки клеточные системы подвоя и привоя становятся едиными.

Открытие, что информационная РНК может передвигаться между клетками хозяина и по привою, раскрывает механизм, за счет которого эта наследственная информация может потом включаться в ДНК привоя. В последние годы несколько независимых групп исследователей доказали, что вызываемые в привоях вариации фенотипа стабильны и даже могут наследоваться [27, 28, 29]. Запись информации в ДНК хозяина происходит с помощью особых ретровирусов и белковых частиц-ретротранспосом, тем самым информация оказывается интегрированной в геном привоя [30].

В учебнике молекулярной биологии клетки Альбертса с соавторами [31] сказано, что растительные клетки соединены специальными цитоплазматическими мостиками диаметром 20-40 нанометров (вспомните нанотехнологию), или плазмодесмами. Каждая из них, как правило, содержит десмотрубочку, соединяющее эндоплазматические ретикулумы (это особые частички клетки, где происходит синтез белков) соседних клеток. По плазмодесмам могут передвигаться вирусы и информационная РНК. Плазмодесмы пропускают вирусы и информационную РНК. Зачем там находится мембранная трубочка эндоплазматического ретикулума, не ясно. Межклеточные мостики, видимо, рвутся при высыхании, клетки отделяются, а потом восстанавливаются или же клетки гибнут.

О растительном синцитии и транспортировке информационной РНК мало кто знает. Об этом ничего не написано в российских учебниках. Даже в самом современном учебнике по физиологии растений [32] я не нашел описания плазмодесм и возможности транспорта информационной ДНК по ним. Вот он. Беру этот современный российский учебник по физиологии растений [33] и вижу, что там об этом нет ни слова. Хотя межклеточные мостики на схеме растительной клетки есть, но они в тексте не упомянуты и о них в тексте нет объяснения. Нет в этом учебнике ни слова о заслугах Лысенко в агробиологии, хотя в западных учебниках об этом есть упоминание. Хуже всего быть пророком в своем отечестве.

5. УПРОЩЕННАЯ МОДЕЛЬ ПЕРЕДАЧИ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ В РАСТЕНИЯХ

Представьте себе несколько закрытых бачков, заполненных субстанцией, которая похожа на раствор яичного белка, и соединенных между собой тонкими трубочками. Раствор в баках содержит не только белки, типа раствора яичного белка, но и сахара, ионы, небольшие растворимые молекулы РНК, аминокислоты и некоторые другие вещества. Баки герметически закрыты. Стенка баков есть аналог клеточной мембраны или, по-научному, плазматической мембраны. Если в один из баков впрыснуть краску, то она быстро диффундирует в другие баки. Баки - это клетки, а трубочки - это плазмодесмы.

Внутри баков проложены миниатюрные железные дороги, которые могут перевозить небольшие грузы. В каждом баке имеется небольшая машинка для копирования дисков с большого твердого диска-винчестера. Эти диски могут прицепляться к паровозикам, курсирующим по миниатюрным железным дорогам. Итак, наша копировальная машина открывает винчестер, то есть ДНК и копирует на нем светооптический диск, то есть информационную РНК. Этот диск прицепляется к паровозикам, то есть микротрубочковым белкам-моторам и паровозики тащат диски по колеям к пересадочным станциям в виде плазмодесм-трубочек.

Информационная РНК (в нашем случае - СД диски) может транспортироваться клеткой с помощью микротрубочек и специальных микротрубочковых моторов, которые используют энергию АТФ или других богатых энергией молекул для целенаправленного и активного перемещения по микротрубочкам в определенные места клетки.

Около межклеточных трубочек диски сгружаются и вручную переносят через трубочку в следующий бак, где они снова грузятся на паровозики и их везут к копировальной машине данного бака. Здесь включается считывание и генетическая информация считывается с диска и записывается на винчестер данного бака. Вот вся суть открытия Мичурина и Лысенко, объясненная с точки зрения современной молекулярной и клеточной биологии.

Что происходит при гибридизации? При пересадке привоя черенок другого растения-гостя внедряется в разрез на коре подвоя (или растения-хозяина). При разрезе или повреждении коры дерева или, в случае травянистого растения, наружной части стебля под ней немедленно начинается активное деление и размножение окружающих клеток, которые формируют здесь скопление. В этом скоплении вновь образованные клетки устанавливают между собой цитоплазматические мостики, трубочки, или плазмодесмы. Одновременно делятся и клетки в месте отреза привоя (растения-гостя) на границе между омертвевшей древесиной и корой. Делящиеся клетки хозяина и гостя устанавливают между собой межклеточные контакты и формируется общая клеточная система - синцитий, включающая клетки двух разных растений. По этой системе как по трубочкам между закрытыми бачками (см. выше) идет передвижение информационной РНК, а затем обратная трансляция информации на ДНК привоя и в меньшей степени на ДНК хозяина. Все это доказано экспериментально.

Вспомним, как работает генетический код. На диске каждая аминокислота записана комбинацией 3 из 4 возможных углублений, квадратного, круглого, треугольного и овального, отпечатанных на диске. Форма углубления является аналогией разных нуклеотидов. Аминокислоты перевозятся грузовичками - транспортными РНК. Если код диска (информационой РНК) соответсвует тому, что записан на борту грузовичка, то грузовичок (транспортная РНК) останавливается, въезжает во двор (рибосому), сгружает аминокислоту и е приваривают в виде сегмента к формирующейся огромной подвижной цепи. Эта цепь и есть белок.

Итак, в растениях передача наследственной информации идет по внутриклеточным путям синцития растений (или, как говорят, по флоэме). Недавно эксперименты с привоями подтвердили, что эндогенная (от хозяина) информационная РНК входит и передвигается по системам перемещения растворов в привоях [34]. После открытия того факта, что информационная РНК может передвигаться между клетками хозяина и по привою раскрывают механизм за счет которого эта наследственная информация может потом включаться в ДНК привоя с помощью ретровирусов и ретротранспосом и поэтому оказывается интегрирована в геном привоя [35]. Существует также механизм горизонтального переноса генетической информации от левкоя (подвоя) к побегу и наоборот - от привоя к подвою. Предвосхищая нынешние открытия клеточных биологов, Лысенко считал, что из подвоя в привой переходят не хромосомы, а как он называл, ассимиляты.

В последние годы несколько независимых групп исследователей доказали, что изменения наследственной информации, вызываемые в привоях после вегетативной гибридизации, стабильны и даже могут наследоваться [44, 45, 46, 47]. Доказано также, что если в какой-то клетке растения обнаруживается избыток какого-либо белка, то информация об этом быстро становится доступной для других клеток (они ведь образуют синцитий, будучи связаны межклеточными мостиками, по которым информация и передается) и они снижают синтез данного белка. Это было установлено с использованием метода пересадки генов от одного растения к другому [39, 40].

Итак, механизм передачи наследственных свойств подвою лежит в рамках современной генетической догмы. Белки и молекулы РНК могут легко проходить через флоэму (канальцы, связывающие клетки синцития растений друг с другом) и поэтому также переходить от подвоя к привою. Таким образом, наследственная информация переносится от РНК подвоя к ДНК привоя или, наоборот, от РНК привоя к ДНК подвоя. Транспортируемые молекулы, синтезируемые в других частях организма, воздействуют на онтогенез и физиологию (и тем самым на фенотип) конкретной ткани, а не всего растения. Поэтому при нормальных условиях различия между частями растения очень трудно наблюдать.

С точки зрения общей биологии важен факт того, что наследственные различия в фенотипе существуют между клетками различных частей одного растения. Оказалось, что индивидуальные органы и ткани растения могут отличаться не только фенотипически (то есть отличиями внешних признаков), но и генетически (на основе записанной наследственной информации) [48].

Гибридизация привоев оказалась простым, но мощным методом создания новых сортов. Она позволяет объяснить тайну выведения плодовых деревьев древним человеком [49]. После Лысенко соматическая гибридизация или спонтанного явление слияния неполовых (соматических) клеток in vitro (вне организма или точнее в культуре ткани) была переоткрыта руководителем лаборатории тканевых культур и вирусов Жорж Барский (Georges Barski) во Франции в 1960 году. Соматические гибриды клеток растений, полученные по методике Барского, можно выращивать в виде культуры тканей, и получать целое растение "на грядке" [50].

6. ЗАКЛЮЧЕНИЕ

Итак, современная молекулярная биология легко объясняет результаты вегетативной гибридизации, которые долгое время оставались водоразделом для признания некоторых научных результатов Лысенко. Если использовать научный язык, то Мичурин и Лысенко впервые применили на практике направленный мутагенез с помощью использования информационной РНК растения-хозяина для изменения наследственности в геноме растения привоя, гостя.

Раз при считывании наследственной информации возможно появление большого количества ошибок, значит, окружающая среда приобретает не меньшее, если не большее значение в реализации наследственной информации, о чем постоянно и говорил Лысенко. Поэтому вывод может быть только один, Лысенко был прав. По крайней мере, он ошибался не больше, чем тогдашние генетики.

По сути, из всей генетики к настоящему времени остались очень ограниченные в применении законы Менделя. По сути, генетики больше нет. Все остальное выделилось в новую науку - молекулярную биологию. Оказалось, что гены - не неделимые частички, что нет связи ген - сложный признак на уровне многоклеточных организмов.

Генетики заявляют, что генетика - точная наука. Но это они явно преувеличивают. Мутации нарушают функцию белков, только если они затрагивают главные их центры, те участки, которые определяют главную функцию белков. Поэтому многобелковые признаки, проявление которых зависит от десятков генов, не передаются, нет благоприобретения признака отсутствия хвоста или препуциума. Но признак способности белка быть синтезируемым и секретируемым в желудочный сок у взрослых особей может благоприобретаться. Как у человека в случае с секрецией фермента, лактазы, которая разрушает лактозу молока.

Генетика прокариотов вообще не знает расщепления признаков. Морган оказался не прав в определении генов. Мендель оказался не прав, делая обобщение о расщеплении 3 к одному для большинства признаков. Они оказались не правыми в том, что приобретенные признаки не наследуются. Наследуются и даже благоприобретенные. У млекопитающих не более 1% ДНК приходится на долю ДНК, кодирующей белки [21]. Неверно и то, что имеется соотношение ген-признак. Нет полного соответствия последовательность нуклеотидов - белок, так как есть интроны. А у большинства белков нет функции по кодированию внешних признаков, которые могли бы быть зарегистрированы во времена Лысенко.


Итак, современные гипотезы в области молекулярной биологии больше соответствуют идеям Лысенко, а не морганистов. Многие положения Лысенко по генетике, которые не признавались его современниками, в настоящее время полностью подтвердились, как, например, положение о том, что наследственность может передаваться не только половым путём, но и соматическими клетками, а также и многие другие. Это доказывает, что мичуринцы были правы, сомневаясь в жесткости так называемых законов расщепления признаков Менделя.
Tags: Гонения на генетику
Subscribe

  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

  • 0 comments